# Character: X18
# Comment: tensor 3 with 5
# Ind: 0
# Ring: C
# Sparsity: 81%
local b, B, w, W, i, result, delta, idmat;
result := rec();
w := E(3); W := E(3)^2;
b := E(7)+E(7)^2+E(7)^4; B := -1-b; # b7, b7**
i := E(4);
result.comment := "3A6 as 15 x 15 matrices\n";
result.generators := [
[[-1,1,0,0,1,0,0,0,0,0,0,0,0,0,0],
[0,1,0,-1,1,0,0,0,0,0,0,0,0,0,0],
[0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0],
[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1],
[0,0,0,0,0,0,0,0,0,0,0,-1,0,1,-1],
[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1],
[0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0],
[0,0,0,0,0,1,-1,0,0,-1,0,0,0,0,0],
[0,0,0,0,0,0,-1,0,1,-1,0,0,0,0,0],
[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0],
[0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0]]
,
[[0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0],
[0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,1,-1,-1,1,-1,0,0,0,0,0],
[0,0,0,0,0,1,0,-1,0,-1,0,0,0,0,0],
[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0],
[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0],
[-1,1,1,-1,1,0,0,0,0,0,0,0,0,0,0],
[-1,0,1,0,1,0,0,0,0,0,0,0,0,0,0],
[0,0,E(15)^7+E(15)^13,0,0,0,0,E(15)^2+E(15)^8,0,0,0,0,-1,0,0],
[0,E(15)^7+E(15)^13,0,0,0,0,E(15)^2+E(15)^8,0,0,0,0,-1,0,0,0],
[0,0,0,0,-E(15)^7-E(15)^13,0,0,0,0,-E(15)^2-E(15)^8,0,0,0,0,1],
[-E(15)^7-E(15)^13,E(15)^7+E(15)^13,E(15)^7+E(15)^13,-E(15)^7-E(15)^13,
E(15)^7+E(15)^13,-E(15)^2-E(15)^8,E(15)^2+E(15)^8,E(15)^2+E(15)^8,
-E(15)^2-E(15)^8,E(15)^2+E(15)^8,1,-1,-1,1,-1],
[-E(15)^7-E(15)^13,0,E(15)^7+E(15)^13,0,E(15)^7+E(15)^13,-E(15)^2-E(15)^8,
0,E(15)^2+E(15)^8,0,E(15)^2+E(15)^8,1,0,-1,0,-1]]];
result.symmetricforms := [ ];
result.antisymmetricforms := [ ];
result.hermitianforms := [ ];
result.centralizeralgebra := [ ];
return result;