Order = 211341312 = 212.34.72.13.
Mult = 1.
Out = 3.
Porting notes
Porting incomplete.Standard generators
Standard generators of 3D4(2) are a, b where a is in class 2A, b has order 9, ab has order 13 and abb has order 8. Alternatively: a is in class 2A, b has order 9 and ab has order 13.
Standard generators of 3D4(2).3 are c, d where c has order 2 (necessarily in class 2B), d is in class 3D, cd has order 21, cdcdd has order 7 and cdcdcdcddcdcddcddcdd has order 6.
Representations
Representations of 3D4(2)
- View detailed report.
- Permutation representations:
Number of points ID Generators Description Link 819 Std Details - Matrix representations
Char Ring Dimension ID Generators Description Link 0 Z 26 Std Details 0 Z 52 Std Details 0 Z 196 Std Details Char Ring Dimension ID Generators Description Link 2 GF(8) 8 a Std Details 2 GF(2) 26 Std Details Char Ring Dimension ID Generators Description Link 3 GF(3) 25 Std Details 3 GF(3) 52 Std Details 3 GF(3) 196 Std Details 3 GF(3) 324 Std Details 3 GF(27) 351 a Std Details 3 GF(27) 351 b Std Details 3 GF(27) 351 c Std Details 3 GF(3) 441 Std Details 3 GF(3) 1053 Std Details Char Ring Dimension ID Generators Description Link 7 GF(7) 26 Std Details 7 GF(7) 298 Std Details Char Ring Dimension ID Generators Description Link 13 GF(13) 26 Std Details
Representations of 3D4(2).3
- View detailed report.
- Matrix representations
Char Ring Dimension ID Generators Description Link 2 GF(2) 24 Std Details 2 GF(2) 26 Std Details 2 GF(2) 144 Std Details 2 GF(2) 246 a Std Details 2 GF(2) 480 Std Details Char Ring Dimension ID Generators Description Link 3 GF(3) 52 Std Details 3 GF(3) 196 Std Details Char Ring Dimension ID Generators Description Link 7 GF(7) 26 a Std Details 7 GF(7) 52 a Std Details 7 GF(7) 273 a Std Details 7 GF(7) 298 a Std Details 7 GF(7) 467 a Std Details Char Ring Dimension ID Generators Description Link 13 GF(13) 26 a Std Details
Maximal subgroups
Maximal subgroups of 3D4(2)
Subgroup | Order | Index | Programs/reps |
---|---|---|---|
21+8:L2(8) | Program: Generators | ||
[211]:(7 × S3) | Program: Generators | ||
U3(3):2 | Program: Generators | ||
S3 × L2(8) | Program: Generators | ||
(7 × L2(7)):2 | Program: Generators | ||
31+2.2S4 | Program: Generators | ||
72:2A4 | Program: Generators | ||
32:2A4 | Program: Generators | ||
13:4 | Program: Generators |
Maximal subgroups of 3D4(2).3
Subgroup | Order | Index | Programs/reps |
---|---|---|---|
3D4(2) | |||
21+8:L2(8):3 | |||
[211]:(7:3 × S3) | |||
3 × U3(3):2 | Program: Generators | ||
S3 × L2(8):3 | |||
(7:3 × L2(7)):2 | |||
31+2.2S4.3 | |||
72:(2A4 × 3) | |||
32:2A4 × 3 | |||
13:12 |
Conjugacy classes
Conjugacy classes of 3D4(2)
Conjugacy class | Centraliser order | Power up | Class rep(s) |
---|---|---|---|
1A | 211 341 312 |
abbabbbabbbabbabbbabbbabbabbbabbbabbabbbabbb | |
2A | 258 048 |
ababbbababbbababbbababbb | |
2B | 3 072 |
abbabbbabbbabbabbbabbb | |
3A | 1 512 |
abbabbabbbabbbabbabbabbbabbb | |
3B | 648 |
abbbbabbbbabbbbabbbb | |
4A | 3 584 |
ababbbababbb | |
4B | 1 536 |
abbabb | |
4C | 64 |
abbabbbabbb | |
6A | 72 |
abbbbabbbb | |
6B | 24 |
abbabbabbbabbb | |
7A | 1 176 |
ababbbbababbbbababbbbababbbbababbbbababbbbababbbbababbbb | |
7B | 1 176 |
Omitted owing to length. | |
7C | 1 176 |
ababbbbababbbbababbbbababbbb | |
7D | 49 |
abababbb | |
8A | 32 |
ababbb | |
8B | 32 |
abb | |
9A | 54 |
abbbabbb | |
9B | 54 |
abbbabbbabbbabbb | |
9C | 54 |
abbbabbbabbbabbbabbbabbbabbbabbb | |
12A | 12 |
abbbb | |
13A | 13 |
ab | |
13B | 13 |
abab | |
13C | 13 |
abababab | |
14A | 56 |
(ababbbbababbbb)3 | |
14B | 56 |
ababbbbababbbb | |
14C | 56 |
(ababbbbababbbb)9 | |
18A | 18 |
(abbb)7 | |
18B | 18 |
(abbb)49 | |
18C | 18 |
abbb | |
21A | 21 |
abbabbbabbabbb | |
21B | 21 |
abbabbbabbabbbabbabbbabbabbb | |
21C | 21 |
abbabbb | |
28A | 28 |
ababbbb | |
28B | 28 |
(ababbbb)9 | |
28C | 28 |
(ababbbb)3 |
Download words for class representatives.
Conjugacy classes of 3D4(2).3
Conjugacy class | Centraliser order | Power up | Class rep(s) |
---|---|---|---|
1A | 634 023 936 |
(cdcdcddcdcdcddcdcdcdcddcdcdcddcd)3 | |
2A | 774 144 |
(cdcdcddcddcdcdcddcdcdcddcdcdcdcddcddcdcdcddcdcdcddcd)3 | |
2B | 9 216 |
(cdcdcddcdcdcddcd)3 | |
3A | 4 536 |
cdcdcddcdcdcddcdcdcdcddcdcdcddcd | |
3B | 1 944 |
Omitted owing to length. | |
4A | 10 752 |
(cdcdcddcdcddcdcdcddcdcdd)3 | |
4B | 4 608 |
(cdcdcddcddcdcdcddcdcdcddcd)3 | |
4C | 192 |
(cdcdcdd)3 | |
6A | 216 |
cdcdcddcddcdcdcddcdcdcddcdcdcdcddcddcdcdcddcdcdcddcd | |
6B | 72 |
cdcdcddcdcdcddcd | |
7A | 1 176 |
Omitted owing to length. | |
7D | 147 |
(cd)3 | |
8A | 96 |
(cdcdcddcdcdd)3 | |
8B | 96 |
(cdcdcdcdcddcd)3 | |
9A | 54 |
cddcdcdcdcdcddcdcddcdcdcdcdcddcd | |
12A | 36 |
cdcdcddcddcdcdcddcdcdcddcd | |
13A | 13 |
cdcdcddcdcdcdcddcdcdd | |
14A | 56 |
ccdcdcddcddcdcdcddcdcdcddcdccdcdcddcddcdcdcddcdcdcddcd | |
18A | 18 |
cddcdcdcdcdcddcd | |
21A | 21 |
cdcdcdcddcd | |
28A | 28 |
ccdcdcddcddcdcdcddcdcdcddcd | |
3C | 36 288 |
Omitted owing to length. | |
3C' | 36 288 |
dcdcdcddcdcdcddcddcdcdcddcdcdcddcd | |
3D | 648 |
cdcdcddcdcdcddcdcdcddcdcdcdd | |
3D' | 648 |
cdcdcddcdcdcddcdcdcddcdcdcddcdcdcddcdcdcddcdcdcddcdcdcdd | |
6C | 576 |
dcdcdcddcdcdcddcdcdcdcdcdcddcddcdcdcddcdcdcddcdcdcdcdcdcddcd | |
6C' | 576 |
Omitted owing to length. | |
6D | 144 |
dcdcdcddcdcdcddcd | |
6D' | 144 |
(dcdcdcddcdcdcddcd)5 | |
6E | 72 |
(cdcdcddcdcdcdd)5 | |
6E' | 72 |
cdcdcddcdcdcdd | |
9D | 54 |
cdcdcddcdcdcdcddcd | |
9D' | 54 |
cdcdcddcdcdcdcddcdcdcdcddcdcdcdcddcd | |
12B | 288 |
(cdcdcdcdcddcdcdcdcdcdcddcd)5 | |
12B' | 288 |
cdcdcdcdcddcdcdcdcdcdcddcd | |
12C | 144 |
(dcdcdcddcdcdcddcdcdcdcdcdcddcd)5 | |
12C' | 144 |
dcdcdcddcdcdcddcdcdcdcdcdcddcd | |
12D | 96 |
(cdcdcddcdcddcdcdcddcdcdd)5 | |
12D' | 96 |
cdcdcddcdcddcdcdcddcdcdd | |
12E | 12 |
cdcdcdd | |
12E' | 12 |
(cdcdcdd)5 | |
18D | 18 |
(cdcdcddcd)5 | |
18D' | 18 |
cdcdcddcd | |
21D | 21 |
cd | |
21D' | 21 |
cdcd | |
24A | 24 |
cdcdcdcdcddcd | |
24A' | 24 |
(cdcdcdcdcddcd)5 | |
24B | 24 |
cdcdcddcdcdd | |
24B' | 24 |
(cdcdcddcdcdd)5 |
Download words for class representatives.