Order = 44352000 = 29.32.53.7.11.
Mult = 2.
Out = 2.
Porting notes
Porting incomplete.Standard generators
Standard generators of HS are a, b where a is in class 2A, b is in class 5A and ab has order 11.
Standard generators of 2.HS are preimages A, B where B has order 5 and AB has order 11.
Standard generators of HS:2 are c, d where c is in class 2C, d is in class 5C and cd has order 30.
Standard generators of 2.HS.2 are preimages C, D where D has order 5.
Black box algorithms
Finding generators
Group | Algorithm | File |
---|---|---|
HS |
| Download |
HS:2 |
| Download |
Checking generators (semi-presentations)
Group | Semi-presentation | File |
---|---|---|
HS | 〈〈 a, b | o(a) = 2, o(b) = 5, o(ab) = 11, o(ab2) = 10, o(abab2) = 15 〉〉 | Download |
HS:2 | 〈〈 c, d | o(c) = 2, o(d) = 5, o(cd) = 30, o([c,d]) = 3 〉〉 | Download |
Presentations
Group | Presentation | Link |
---|---|---|
HS | 〈 a, b | a2 = b5 = (ab)11 = (ab2)10 = [a, b]5 = [a, b2]6 = [a, bab]3 = ababab2ab−1ab−2ab−1ab2abab(ab−2)4 = ab(ab2(ab−2)2)2ab2abab2(ab−1ab2)2 = abab(ab2)2ab(ab−1)2ab(ab2)2ababab−2ab−1ab−2 = 1 〉 | Details |
HS:2 | 〈 c, d | c2 = d5 = [c, d]3 = [c, d2]4 = ((cd)4cd−2cd−1cd−1cd−2)2 = [c, dcdcd2cd−2(cd2)2cd−1] = [c, dcdcd−2cd−1(cd−2)3] = [c, d−1cd−1cd2cd(cd2)3] = 1 〉 | Details |
Representations
Representations of HS
- View detailed report.
- Permutation representations:
Number of points ID Generators Description Link 100 Std Details 176 b Std Details 1100 a Std Details 1100 b Std Details 3850 Std Details 4125 Std Details 5600 a Std Details 15400 Std Details - Matrix representations
Char Ring Dimension ID Generators Description Link 0 Z 22 Std Details 0 Z 77 Std Details 0 Z 154 a Std Details 0 Z 154 b Std Details 0 Z 154 c Std Details 0 Z 175 Std Details 0 Z 231 Std Details Char Ring Dimension ID Generators Description Link 2 GF(2) 20 Std Details 2 GF(2) 56 Std Details 2 GF(2) 132 Std Details 2 GF(2) 518 Std Details 2 GF(4) 896 a Std Details 2 GF(4) 896 b Std Details 2 GF(2) 1000 Std Details Char Ring Dimension ID Generators Description Link 3 GF(3) 22 Std Details 3 GF(3) 49 a Std Details 3 GF(3) 49 b Std Details 3 GF(3) 77 Std Details 3 GF(3) 154 a Std Details 3 GF(3) 154 b Std Details 3 GF(3) 154 c Std Details 3 GF(3) 231 Std Details 3 GF(3) 321 Std Details 3 GF(3) 693 Std Details 3 GF(3) 748 Std Details 3 GF(3) 770 a Std Details 3 GF(3) 825 Std Details Char Ring Dimension ID Generators Description Link 5 GF(5) 21 Std Details 5 GF(5) 55 Std Details 5 GF(5) 98 Std Details 5 GF(5) 133 a Std Details 5 GF(5) 133 b Std Details 5 GF(5) 175 Std Details 5 GF(5) 210 Std Details 5 GF(5) 280 a Std Details 5 GF(5) 518 Std Details 5 GF(5) 650 Std Details Char Ring Dimension ID Generators Description Link 7 GF(7) 22 Std Details 7 GF(7) 77 Std Details 7 GF(7) 154 a Std Details 7 GF(7) 154 b Std Details 7 GF(7) 154 c Std Details 7 GF(7) 175 Std Details 7 GF(7) 231 Std Details 7 GF(7) 605 Std Details 7 GF(7) 693 Std Details 7 GF(7) 770 a Std Details 7 GF(7) 770 b Std Details 7 GF(7) 770 c Std Details 7 GF(7) 803 Std Details 7 GF(49) 896 a Std Details 7 GF(49) 896 b Std Details Char Ring Dimension ID Generators Description Link 11 GF(11) 22 Std Details 11 GF(11) 77 Std Details 11 GF(11) 154 a Std Details 11 GF(11) 154 b Std Details 11 GF(11) 154 c Std Details 11 GF(11) 174 Std Details 11 GF(11) 231 Std Details 11 GF(11) 693 Std Details 11 GF(11) 770 a Std Details 11 GF(121) 770 b Std Details 11 GF(121) 770 c Std Details 11 GF(11) 825 Std Details 11 GF(11) 854 Std Details 11 GF(11) 896 Std Details
Representations of 2.HS
- View detailed report.
- Permutation representations:
Number of points ID Generators Description Link 704 Std Details 4400 Std Details 11200 a Std Details - Matrix representations
Char Ring Dimension ID Generators Description Link 3 GF(3) 56 Std Details 3 GF(9) 176 b Std Details 3 GF(3) 440 Std Details 5 GF(5) 28 b Std Details 5 GF(5) 120 b Std Details 5 GF(5) 440 b Std Details 7 GF(7) 56 Std Details 11 GF(11) 56 Std Details
Representations of HS:2
- View detailed report.
- Permutation representations:
Number of points ID Generators Description Link 100 Std Details 352 Std Details 1100 b Std Details 15400 Std Details - Matrix representations
Char Ring Dimension ID Generators Description Link 0 Z 22 Std Details Char Ring Dimension ID Generators Description Link 2 GF(2) 20 Std Details 2 GF(2) 22 Std Details 2 GF(2) 56 Std Details 2 GF(2) 132 Std Details 2 GF(2) 518 Std Details 2 GF(2) 1000 Std Details 2 GF(2) 1408 Std Details 2 GF(2) 1792 Std Details Char Ring Dimension ID Generators Description Link 3 GF(3) 22 a Std Details 3 GF(3) 77 a Std Details 3 GF(3) 98 a Std Details 3 GF(3) 154 a Std Details 3 GF(3) 231 a Std Details 3 GF(3) 308 a Std Details 3 GF(3) 321 a Std Details 3 GF(3) 693 a Std Details 3 GF(3) 748 a Std Details 3 GF(3) 825 a Std Details Char Ring Dimension ID Generators Description Link 5 GF(5) 21 a Std Details 5 GF(5) 55 a Std Details 5 GF(5) 98 a Std Details 5 GF(5) 175 a Std Details 5 GF(5) 210 a Std Details 5 GF(5) 266 a Std Details 5 GF(5) 518 a Std Details 5 GF(5) 560 a Std Details 5 GF(5) 650 a Std Details Char Ring Dimension ID Generators Description Link 7 GF(7) 22 a Std Details 7 GF(7) 77 a Std Details 7 GF(7) 154 a Std Details 7 GF(7) 175 a Std Details 7 GF(7) 231 a Std Details 7 GF(7) 308 a Std Details 7 GF(7) 605 a Std Details 7 GF(7) 693 a Std Details 7 GF(7) 693 a Std Details 7 GF(7) 770 a Std Details 7 GF(7) 803 Std Details 7 GF(7) 803 a Std Details Char Ring Dimension ID Generators Description Link 11 GF(11) 22 a Std Details 11 GF(11) 77 a Std Details 11 GF(11) 154 a Std Details 11 GF(11) 174 a Std Details 11 GF(11) 231 a Std Details 11 GF(11) 308 a Std Details 11 GF(11) 693 a Std Details 11 GF(11) 770 a Std Details 11 GF(11) 825 a Std Details 11 GF(11) 854 a Std Details 11 GF(11) 896 a Std Details
Representations of 2.HS.2
- View detailed report.
- Permutation representations:
Number of points ID Generators Description Link 1408 Std Details - Matrix representations
Char Ring Dimension ID Generators Description Link 3 GF(9) 56 Std Details 3 GF(3) 112 Std Details 5 GF(5) 56 Std Details
Maximal subgroups
Maximal subgroups of HS
Subgroup | Order | Index | Programs/reps |
---|---|---|---|
M22 | 443 520 | 100 | Program: Standard generators |
U3(5):2 | 252 000 | 176 | Program: Standard generators |
U3(5):2 | 252 000 | 176 | Program: Standard generators |
L3(4):21 | 40 320 | 1 100 | Program: Standard generators |
S8 | 40 320 | 1 100 | Program: Standard generators |
24.S6 | 11 520 | 3 850 | Program: Generators mapping onto standard generators |
43:L3(2) | 10 752 | 4 125 | Program: Generators mapping onto standard generators |
M11 | 7 920 | 5 600 | Program: Standard generators |
M11 | 7 920 | 5 600 | Program: Standard generators |
4.24.S5 | 7 680 | 5 775 | Program: Generators mapping onto standard generators |
2 × A6.22 | 2 880 | 15 400 | Program: Generators |
5:4 × A5 | 1 200 | 36 960 | Program: Generators mapping onto standard generators |
Maximal subgroups of HS:2
Subgroup | Order | Index | Programs/reps |
---|---|---|---|
HS | 44 352 000 | 2 | Program: Standard generators |
M22:2. | 887 040 | 100 | Program: Generators Program: Generators |
L3(4):22 | 80 640 | 1 100 | Program: Generators |
S8 × 2 | 80 640 | 1 100 | Program: Generators Program: Generators |
25.S6 | 23 040 | 3 850 | Program: Generators |
43:(2 × L3(2)) | 21 504 | 4 125 | Program: Generators Program: Generators |
21+6.S5 | 15 360 | 5 775 | Program: Generators |
(2 × A6.22).2 | 5 760 | 15 400 | Program: Generators |
51+2:[25] | 4 000 | 22 176 | Program: Generators |
5:4 × S5 | 2 400 | 36 960 | Program: Generators |
Conjugacy classes
Conjugacy classes of HS
Conjugacy class | Centraliser order | Power up | Class rep(s) |
---|---|---|---|
1A | 44 352 000 |
(ababbb)8 | |
2A | 7 680 | 4A 4B 4C 6B 8A 8B 8C 10A 12A 20A 20B |
(ababbb)4 |
2B | 2 880 | 6A 10B |
(ababbbabababbabaababbbabababbababbbabababb)3 |
3A | 360 | 6A 6B 12A 15A |
(ababbbabababbabaababbbabababbababbbabababb)2 |
4A | 3 840 | 12A 20A 20B |
(ababbbabababbabaababbbabababb)3 |
4B | 256 | 8A |
(ababbb)2 |
4C | 64 | 8B 8C |
(abaababbbabababb)2 |
5A | 500 | 10A 20A 20B |
(aababbbabababb)4 |
5B | 300 | 10B 15A |
(abb)2 |
5C | 25 |
ababbbabababb | |
6A | 36 |
ababbbabababbabaababbbabababbababbbabababb | |
6B | 24 | 12A |
(ababbbabababbabaababbbabababb)2 |
7A | 7 |
abababb | |
8A | 16 |
ababbb | |
8B | 16 |
abaababbbabababb | |
8C | 16 |
ababbababbbabababbabaababbbabababbababbbabababb | |
10A | 20 | 20A 20B |
(aababbbabababb)2 |
10B | 20 |
abb | |
11A | 11 | 11B2 |
ab |
11B | 11 | 11A2 |
(ab)2 |
12A | 12 |
ababbbabababbabaababbbabababb | |
15A | 15 |
ababb | |
20A | 20 | 20B11 |
aababbbabababb |
20B | 20 | 20A11 |
(aababbbabababb)11 |
Download words for class representatives.
Conjugacy classes of HS:2
Conjugacy class | Centraliser order | Power up | Class rep(s) |
---|---|---|---|
1A | 88 704 000 | ||
2A | 15 360 | 4A 4B 4C 6B 8A 8B 10A 12A 20A 4D 4E 8C 8D 12B 20C 20D | |
2B | 5 760 | 6A 10B 4F 20B | |
3A | 720 | 6A 6B 12A 15A 6C 6D 6E 12B 30A | |
4A | 7 680 | 12A 20A | |
4B | 512 | 8A 8C 8D | |
4C | 128 | 8B | |
5A | 1 000 | 10A 20A 20C 20D | |
5B | 600 | 10B 15A 10C 20B 30A | |
5C | 50 | 10D | |
6A | 72 | ||
6B | 48 | 12A 12B | |
7A | 14 | 14A | |
8A | 32 | ||
8B | 16 | ||
10A | 40 | 20A 20C 20D | |
10B | 40 | 20B | |
11A | 11 | ||
12A | 24 | ||
15A | 30 | 30A | |
20A | 20 | ||
2C | 80 640 | 6C 6D 10C 14A 30A | |
2D | 3 840 | 6E 10D | |
4D | 640 | 20C 20D | |
4E | 192 | 12B | |
4F | 80 | 20B | |
6C | 720 | 30A | |
6D | 72 | ||
6E | 48 | ||
8C | 64 | ||
8D | 64 | ||
10C | 60 | 30A | |
10D | 10 | ||
12B | 24 | ||
14A | 14 | ||
20B | 20 | ||
20C | 20 | 20D3 | |
20D | 20 | 20C3 | |
30A | 30 |
Download words (if any exist) for class representatives.