Order = 175560 = 23.3.5.7.11.19.
Mult = 1.
Out = 1.


Porting notes

Porting incomplete.

Standard generators

Standard generators of J1 are a, b where a has order 2, b has order 3, ab has order 7 and ababb has order 19.


Black box algorithms

Finding generators

Group Algorithm File
J1
Download

Checking generators (semi-presentations)

Group Semi-presentation File
J1 〈〈 a, b | o(a) = 2, o(b) = 3, o(ab) = 7, o(abab2) = 19 〉〉 Download

Presentations

Group Presentation Link
J1 a, b | a2 = b3 = (ab)7 = (ab(abab−1)3)5 = (ab(abab−1)6abab(ab−1)2)2 = 1 〉 Details

Representations

Representations of J1


Maximal subgroups

Maximal subgroups of J1

Subgroup Order Index Programs/reps
L2(11) Program: Standard generators
23:7:3 = F168 Program: Generators
2 × A5 Program: Generators
19:6 = F114 Program: Generators
11:10 = F110 Program: Generators
D6 × D10 Program: Generators
7:6 = F42 Program: Generators

Conjugacy classes

Conjugacy classes of J1

Conjugacy class Centraliser order Power up Class rep(s)
1A175 560 (ababbababbabababbabbababbababbabababbabb)3
2A120 6A 10A 10B (ababbababbabababbabb)3
3A30 6A 15A 15B ababbababbabababbabbababbababbabababbabb
5A30 5B2 10A 10B 15A 15B ababbabababbabbababbabababbabb
ababbabababbabbababbabababbabb
5B30 5A2 10A 10B 15A 15B ababbabababbabbababbabababbabbababbabababbabbababbabababbabb
6A6 ababbababbabababbabb
ababbababbabababbabb
7A7 ab
ab
10A10 10B3 (ababbabababbabb)3
10B10 10A3 ababbabababbabb
ababbabababbabb
ababbabababbabb
11A11 abababbabbababbabababbabbababbabababbabb
abababbabbababbabababbabbababbabababbabb
15A15 15B2 abababbabbabababbabb
15B15 15A2 abababbabb
abababbabb
abababbabb
19A19 19B4 19C2 ababb
ababb
ababb
19B19 19A2 19C4 ababbababb
19C19 19A4 19B2 ababbababbababbababb

Download words for class representatives.