local z, r, result; result := rec(); result.comment := "2.L2(103) as 104 x 104 monomial matrices over Z(z102)\n"; # Change the value of r to any number between 1 and 25 # to get the complete set of inequivalent faithful irreducible 104-dimensional # representations of 2.L2(103) r := 1; z := E(102)^(2*r-1); result.symmetricforms := [ ]; result.antisymmetricforms := [ ]; result.hermitianforms := [ IdentityMat(104) ]; result.centralizeralgebra := [ IdentityMat(104) ]; result.generators := [ DiagonalMat([z^52,z^50,z^32,z^33,z^4,z^10,z^84,z^100,z^42,z^5,z^7, z^86,z^65,z^99,z^94,z^48,z^97,z^41,z^70,z^77,-1,z^9,z^59,z^55,z^68, z^30,z^14,z,z^25,z^95,z^26,z^31,z^40,z^72,z^8,z^71,z^38,z^28,z^22, z^90,z^19,z^96,z^6,z^21,z^58,z^44,z^47,z^98,z^37,z^62,z^54,z^24, z^79,z^29,z^74,z^78,z^43,z^63,z^85,z^82,z^16,z^73,z^56,z^83,z^76, z^2,1,z^17,z^35,z^11,z^53,z^64,z^23,z^66,z^80,z^88,z^39,z^49,z^13, z^93,z^45,z^75,z^12,z^87,z^67,z^68,z^15,z^34,z^60,z^20,z^91,z^36, z^57,z^92,z^81,z^27,z^18,z^3,z^61,z^101,z^89,z^46,z^69,z^85]) * PermutationMat( ( 1,100)( 2, 28)( 3, 41)( 4, 97)( 5, 47)( 6, 18)( 7,103)( 8, 71) ( 9, 22)( 10,102)( 11, 46)( 12, 85)( 13, 76)( 14, 51)( 15, 23)( 16, 98) ( 17, 63)( 19, 64)( 20, 65)( 21, 67)( 24, 48)( 25, 59)( 26, 44)( 27, 49) ( 29, 31)( 30, 45)( 32, 90)( 33, 70)( 34, 95)( 35, 57)( 36, 60)( 37, 79) ( 38, 73)( 39, 54)( 40, 58)( 42, 93)( 43, 81)( 50, 91)( 52, 96)( 53, 55) ( 56, 82)( 61, 69)( 62, 75)( 66, 78)( 68, 88)( 72,101)( 74, 84)( 77, 83) ( 80, 89)( 86,104)( 87, 92)( 94, 99), 104) , DiagonalMat([z^26,z^63,z^20,z^43,z^24,z^6,z^7,z^80,z^86,z^58,z^74, z^16,z^81,z^83,z^60,z^39,z^73,z^68,z^22,z^71,z^15,z^44,-1,z^25,z^85, z^33,z^29,z^42,z^4,z^90,z^77,z^101,z^69,1,z^5,z^14,z^46,z^84,z^45, z^12,z^2,z^98,z^64,z^95,z^70,z^82,z^97,z^32,z^18,z^21,z^72,z^11, z^36,z^28,z^100,z^53,z^3,z^48,z^52,z^17,z^37,z^59,z^56,z^92,z^47, z^30,z^57,z^50,z^78,z^76,z^93,z^9,z^87,z^27,z^38,z^99,z^40,z^54, z^62,z^13,z^23,z^89,z^67,z^19,z^49,z^88,z^61,z^41,z^91,z^91,z^8, z^34,z^96,z^65,z^10,z^31,z^66,z^55,z,z^94,z^79,z^35,z^75,z^62]) * PermutationMat( ( 1, 21, 87)( 2, 41, 61)( 3, 17, 72)( 4, 58, 52)( 5, 38, 93)( 6, 49, 69) ( 7, 44, 34)( 8, 43, 15)( 9, 33, 85)( 10, 63, 30)( 11, 14, 65)( 12, 56, 26) ( 13, 42, 24)( 16, 94, 55)( 19, 28, 75)( 20, 48, 32)( 22, 40, 37)( 23, 89,104) ( 25, 77,101)( 27, 46, 71)( 29, 50, 31)( 35, 82, 91)( 36, 53, 59)( 39, 64, 83) ( 45, 96, 99)( 47,100, 80)( 51, 57, 74)( 54, 98, 84)( 60, 81, 79)( 62, 90, 78) ( 66,103, 76)( 67,102, 95)( 68, 97, 86)( 70, 88, 73), 104)]; return result;