local z, r, result; result := rec(); result.comment := "L2(229) as 230 x 230 monomial matrices over Z(z114)\n"; # Change the value of r to any number between 1 and 56 # to get the complete set of inequivalent faithful irreducible 230-dimensional # representations of L2(229) r := 1; z := E(114)^r; result.symmetricforms := [ ]; result.antisymmetricforms := [ ]; result.hermitianforms := [ IdentityMat(230) ]; result.centralizeralgebra := [ IdentityMat(230) ]; result.generators := [ DiagonalMat([z^49,z^102,z^51,z^19,z^82,z^23,z^70,z^28,z^103,z^106, z^2,z^48,z^20,z^99,z^37,z^74,z^63,z^51,z^21,z^47,z^100,z^19,z^6, z^84,z^38,z^74,z^66,z^39,z^65,z^72,z^35,z^80,z,z^13,z^93,z^39,z^12, z^41,z^52,z^62,z^24,z^85,z^5,z^32,z^99,z^88,z^84,z^8,z^49,z,z^59, z^109,z^26,z^76,z^67,z^82,z^64,z^73,z^64,z^88,z^39,z^83,z^18,z^43, z^40,z^87,z^106,z^60,z^29,z^69,z^54,z^112,z^31,z^34,z^104,z^27,z^108, z^13,z^38,z^98,z^22,z^14,1,z^91,z^67,z^73,z^2,z^79,z^16,z^29,z^56, z^32,z^111,z^92,z^113,z^15,z^54,z^78,z^10,z^107,z^86,z^44,z^17,z^78, z^90,z^35,z^30,z^15,z^21,z^25,z^45,z^85,z^87,z^86,z^23,z^97,z^61, z^105,z^47,z^68,z^90,z^7,z^71,z^22,z^50,z^7,z^18,z^60,1,z^108,z^9, z^26,z^20,z^50,z^48,z^104,z^94,z^12,z^30,z^59,-1,z^28,z^56,-1,z^27, z^8,z^89,z^98,z^41,z^42,z^11,z^16,z^112,z^96,z^101,z^46,z^3,z^105, z^33,z^4,z^52,z^101,z^69,z^46,z^24,z^81,z^36,z^71,z^110,z^58,z^58, z^55,z^14,z^107,z^102,z^95,z^109,z^113,z^53,z^40,z^92,z^4,z^45,z^65, z^81,z^34,z^9,z^83,z^66,z^44,z^62,z^96,z^5,z^91,z^77,z^25,z^61,z^17, z^10,z^33,z^55,z^68,z^75,z^36,z^89,z^63,z^43,z^75,z^37,z^80,z^76, z^42,z^97,z^111,z^70,z^100,z^31,z^11,z^77,z^79,z^53,z^3,z^72,z^6, z^95,z^103,z^93,z^110,z^94,z^75]) * PermutationMat( ( 1, 29)( 2, 37)( 3,206)( 4,225)( 5, 92)( 6, 84)( 7,190)( 8,101) ( 9,218)( 10,146)( 11,153)( 12,189)( 13,229)( 14,108)( 15,195)( 16,180) ( 17, 18)( 19,227)( 20, 55)( 21, 82)( 22,176)( 23,130)( 24,107)( 25,211) ( 26, 65)( 27,135)( 28,230)( 30,150)( 31,220)( 32, 74)( 33,178)( 34,155) ( 35,109)( 36,203)( 38, 58)( 39, 40)( 41,105)( 42, 90)( 43,177)( 44, 56) ( 45, 96)( 46,132)( 47,139)( 48, 67)( 49,184)( 50, 95)( 51,201)( 52,193) ( 53, 60)( 54, 79)( 57,125)( 59,134)( 61,208)( 62, 73)( 63,192)( 64,168) ( 66, 76)( 68, 97)( 69,112)( 70,183)( 71,128)( 72, 87)( 75, 99)( 77,224) ( 78,162)( 80, 89)( 81,181)( 83,129)( 85,119)( 86,149)( 88,106)( 91,170) ( 93,222)( 94,124)( 98,167)(100,126)(102,215)(103,116)(104,204)(110,147) (111,163)(113,145)(114,142)(115,194)(117,221)(118,187)(120,164)(121,165) (122,174)(123,207)(127,154)(131,158)(133,137)(136,199)(138,175)(140,172) (143,171)(148,152)(151,226)(156,202)(157,214)(159,185)(160,228)(161,191) (166,200)(169,182)(173,216)(179,197)(186,210)(188,217)(196,205)(198,213) (209,219)(212,223), 230) , DiagonalMat([z^105,z^91,z^22,-1,z^69,z^35,z^95,z^68,z^97,z^108,z^4, z^80,z^27,z^61,z^88,z^41,z^30,z^26,z^64,z^105,-1,z,z^51,z^82,z^18, z^9,z^24,z^6,z^15,z^6,z^30,z^95,z^25,z^74,z^99,z^96,z^29,z^48,z^2, z^85,z^11,z^110,z^54,z^87,z^90,z^46,z^83,z^50,z^69,z^94,z^40,z^78, z^70,z^56,z^33,z^9,z^15,z^58,z^21,z^72,z^85,z^112,z^88,z^53,z^34, z^55,z^71,z^110,z^20,z^66,z^49,z^28,z^100,z^73,z^20,z^32,z^91,z^86, z^71,z^77,z^81,z^101,z^27,z^29,z^28,z^79,z^39,z^3,z^47,z^103,z^10, z^32,z^63,z^13,z^78,z^106,z^63,z^74,z^2,z^56,z^50,z^65,z^82,z^76, z^106,z^104,z^46,z^36,z^68,z^86,z,z^113,z^84,z^112,z^113,z^83,z^64, z^31,z^40,z^97,z^98,z^67,z^72,z^54,z^38,z^43,z^102,z^59,z^47,z^89, z^60,z^108,z^43,z^11,z^102,z^80,z^23,z^92,z^13,z^52,1,1,z^111,z^70, z^49,z^44,z^37,z^51,z^55,z^109,z^96,z^34,z^60,z^101,z^7,z^23,z^90, z^65,z^25,z^8,z^100,z^4,z^38,z^61,z^33,z^19,z^81,z^3,z^73,z^66,z^89, z^111,z^10,z^17,z^92,z^31,z^5,z^99,z^17,z^93,z^22,z^18,z^98,z^39, z^53,z^12,z^42,z^87,z^67,z^19,z^21,z^109,z^59,z^14,z^62,z^37,z^45, z^35,z^52,z^36,z^44,z^107,z^75,z^24,z^79,z^12,z^84,z^45,z^48,z^58, z^104,z^76,z^41,z^93,z^16,z^5,z^107,z^77,z^103,z^42,z^75,z^62,z^26, z^94,z^16,z^8,z^12,z^7,z^14,z^102]) * PermutationMat( ( 1,110,196)( 2, 62,159)( 3,172, 32)( 4,182, 87)( 5, 83, 25)( 6,116, 42) ( 7, 43,205)( 8,176, 57)( 9,122,117)( 10,207,200)( 11,118, 86)( 12,136,109) ( 13,164,223)( 14, 81, 78)( 15, 38,138)( 16, 68,218)( 17,204,153)( 18,181,170) ( 19,194,108)( 20, 61,163)( 21,203, 36)( 22,155,105)( 23,219, 98)( 24, 45, 54) ( 26,104, 84)( 27, 76,210)( 28, 95, 31)( 29, 53, 37)( 30,145,128)( 33, 82,127) ( 34,150,197)( 35, 40,146)( 39,160,211)( 41, 93,119)( 44, 63,185)( 46, 65,152) ( 47,107,178)( 48, 89,174)( 49,216, 51)( 50,123,195)( 52,161,101)( 55, 64, 85) ( 56, 80, 72)( 58,121, 60)( 59,142,214)( 66,102,132)( 67,221,103)( 69, 74,191) ( 70,126,177)( 71, 94,199)( 73,134, 88)( 75,140,187)( 77,165,106)( 79,209,192) ( 90,229,143)( 91,167,156)( 92,184,133)( 96,114,173)( 97,228,201)( 99,137,130) (100,220,215)(111,225,120)(112,226,217)(113,124,157)(115,179,183)(129,149,186) (131,166,198)(135,193,189)(139,171,206)(141,227,230)(144,202,148)(147,162,169) (151,188,208)(154,158,222)(168,175,190)(180,213,224), 230)]; return result;