local z, r, result; result := rec(); result.comment := "2.L2(241) as 242 x 242 monomial matrices over Z(z240)\n"; # Change the value of r to any number between 1 and 60 # to get the complete set of inequivalent faithful irreducible 242-dimensional # representations of 2.L2(241) r := 1; z := E(240)^(2*r-1); result.symmetricforms := [ ]; result.antisymmetricforms := [ ]; result.hermitianforms := [ IdentityMat(242) ]; result.centralizeralgebra := [ IdentityMat(242) ]; result.generators := [ DiagonalMat([z^44,z^144,z^69,z^71,z^127,z^167,z^150,z^233,z^161,z^102, z^204,z^135,z^140,z^53,z^230,z^136,z^191,z^225,z^75,z^213,z^27,z^139, z^16,z^83,z^90,z^57,z^223,z^40,z^165,z^163,z,z^236,z^207,z^131,z^227, z^235,z^89,z^59,z^119,z^2,z^122,z^42,z^112,z^137,z^18,z^231,z^171, z^38,z^56,z^77,z^124,z^96,z^177,z^157,z^68,z^78,z^218,z^60,z^195, z^94,z^194,z^58,z^215,z^74,z^63,z^151,z^170,z^88,z^115,z^67,z^45, z^26,z^158,z^217,z^3,z^121,z^95,z^24,z^103,z^222,z^98,z^37,z^66, z^211,z^202,z^105,z^180,z^208,z^212,z^133,z^134,z^8,z^190,z^23,z^55, z^47,z^219,z^101,z^228,z^173,z^34,z^183,z^148,z^92,z^185,z^7,z^93, z^87,z^155,z^52,z^110,z^181,z^97,z^113,z^72,z^15,z^12,z^86,z^138, z^39,z^145,z^214,z^126,z^61,z^224,z^143,z^111,z^172,z^147,z^164, z^117,-1,z^9,z^199,z^187,z^156,z^116,z^106,z^70,z^4,z^200,z^237, z^35,z^48,z^6,z^168,z^174,z^19,z^205,z^160,z^17,z^109,z^220,z^85, z^221,z^169,z^154,z^141,z^31,z^46,z^159,z^50,z^100,z^166,z^186,z^162, z^198,z^175,z^129,z^13,z^210,z^114,z^29,z^62,z^229,z^80,z^128,z^64, z^153,z^18,z^32,z^182,z^5,z^196,z^104,z^176,z^142,z^226,z^81,z^123, z^238,z^43,z^65,z^28,z^51,z^30,z^203,z^152,z^20,z^146,z^130,z^239, z^11,z^25,z^76,z^179,z^73,z^201,z^108,z^10,z^54,z^107,z^21,z^14, z^91,z^132,z^118,z^79,z^41,z^84,z^149,z^184,z^193,z^232,z^22,z^33, z^82,z^192,z^188,z^234,z^216,1,z^178,z^209,z^49,z^125,z^189,z^36, z^206,z^99,z^197,z^102]) * PermutationMat( ( 1,205)( 2,231)( 3,195)( 4,235)( 5, 8)( 6,223)( 7,171)( 9,134) ( 10, 45)( 11,136)( 12, 18)( 13,153)( 14, 70)( 15,201)( 16,125)( 17,156) ( 19, 71)( 20,129)( 21,107)( 22,155)( 23,185)( 24, 82)( 25,196)( 26, 65) ( 27, 44)( 28,176)( 29, 59)( 30,241)( 31, 39)( 32, 51)( 33,179)( 34,175) ( 35, 90)( 36,236)( 37,159)( 38,124)( 40,217)( 41,191)( 42, 56)( 43, 92) ( 46,169)( 47,237)( 48,227)( 49,178)( 50,192)( 52, 78)( 53,102)( 54,197) ( 55,110)( 57,187)( 60, 72)( 61,164)( 62,174)( 63,121)( 64,160)( 66,234) ( 67, 93)( 68,181)( 69,183)( 73, 85)( 74,126)( 75,131)( 76,202)( 77,204) ( 79,151)( 80,119)( 81,225)( 83,211)( 84,221)( 86,116)( 88,198)( 89,103) ( 91,188)( 94,113)( 95,193)( 96,207)( 97,158)( 98,148)( 99,216)(100,135) (101,118)(104,194)(105,168)(106,114)(108,226)(109,149)(111,210)(112,206) (115,144)(117,209)(120,189)(122,200)(123,230)(127,133)(128,229)(130,184) (132,232)(137,140)(138,214)(139,162)(141,150)(142,190)(143,154)(145,172) (146,228)(147,165)(152,203)(157,239)(161,208)(163,199)(166,167)(170,212) (173,215)(177,224)(180,242)(182,233)(186,222)(213,240)(218,219)(220,238), 242) , DiagonalMat([z^73,z^237,z,z^162,z^163,z^37,z^219,z^52,z^84,z^76,z^8, z^130,z^17,z^202,z^63,z^212,z^177,z^121,z^214,z^36,z^122,z^116,z^184, z^81,z^139,z^210,z^126,z^142,z^101,z^44,z^41,z^115,z^167,z^68,z^174, z^3,z^155,z^90,z^13,z^172,z^140,z^201,z^176,z^193,z^146,z^149,z^38, z^228,z^216,z^185,z^145,z^135,z^99,z^33,z^229,z^26,z^64,z^77,z^35, z^197,z^203,z^48,z^234,z^189,z^46,z^138,z^9,z^114,z^10,z^198,z^183, z^170,z^60,z^75,z^188,z^79,z^129,z^195,z^215,z^191,z^227,z^204,z^158, z^42,z^239,z^143,z^58,z^91,z^18,z^109,z^157,z^93,z^182,z^75,z^61, z^211,z^34,z^225,z^133,z^205,z^171,z^15,z^110,z^152,z^27,z^72,z^94, z^57,z^80,z^59,z^232,z^181,z^49,z^175,z^159,z^28,z^40,z^54,z^105, z^208,z^102,z^230,z^137,z^39,z^83,z^136,z^50,z^43,-1,z^161,z^147, z^108,z^70,z^113,z^178,z^213,z^222,z^21,z^51,z^62,z^111,z^221,z^217, z^23,z^5,z^29,z^207,z^238,z^78,z^154,z^218,z^65,z^235,z^128,z^226, z^173,z^98,z^100,z^156,z^196,z^179,z^22,z^190,z^131,z^233,z^164, z^169,z^82,z^19,z^165,z^220,z^14,z^104,z^2,z^56,z^168,z^45,z^112, z^119,z^86,z^12,z^69,z^194,z^192,z^30,z^25,z^236,z^160,z^16,z^24, z^118,z^88,z^148,z^31,z^151,z^71,z^141,z^166,z^47,z^20,z^200,z^67, z^85,z^106,z^153,z^125,z^206,z^186,z^97,z^107,z^7,z^89,z^224,z^123, z^223,z^87,z^4,z^103,z^92,z^180,z^199,z^117,z^144,z^96,z^74,z^55, z^187,z^6,z^32,z^150,z^124,z^53,z^132,z^11,z^127,z^66,z^95,1,z^231, z^134,z^209,z^45]) * PermutationMat( ( 1,203,168)( 2,118, 64)( 3,185,241)( 4,200, 87)( 5,146, 62)( 6,226,193) ( 7, 78,236)( 8, 13,101)( 9,231,229)( 10,111, 40)( 11,166, 34)( 12,221,195) ( 14, 79, 15)( 16,106,160)( 17,186, 47)( 18,132,234)( 19,147,110)( 20,214, 24) ( 21, 89,158)( 22,159,120)( 23,131, 46)( 25,224,145)( 26, 85,194)( 27,181,121) ( 28, 74,144)( 29,153,223)( 30,176,116)( 31,103,212)( 32,152, 73)( 33, 83, 37) ( 35,177,138)( 36,139,208)( 38,187,150)( 39, 63,165)( 41,137,191)( 42,218, 43) ( 44, 49,196)( 45,102, 76)( 48, 68, 66)( 50, 61,219)( 51,104, 71)( 52,235,151) ( 53,210, 97)( 54, 56,112)( 55,233,179)( 57,123,124)( 58,184, 96)( 59,164,225) ( 60,105,189)( 65,125,141)( 67, 80,117)( 69, 86,216)( 70, 95,142)( 72,133,238) ( 75,182,215)( 77, 91,183)( 81,211,228)( 82,115,222)( 84,169,161)( 88, 92,175) ( 90,100,198)( 93,171,149)( 94,242,129)( 98,107,130)( 99,197,207)(108,192,237) (113,239,201)(114,206,220)(119,162,134)(122,205,209)(126,204,148)(127,154,140) (128,213,136)(135,178,163)(143,170,157)(155,202,227)(156,172,232)(167,190,199) (173,174,240)(180,217,230), 242)]; return result;