local z, r, result; result := rec(); result.comment := "L2(59) as 60 x 60 monomial matrices over Z(z29)\n"; # Change the value of r to any number between 1 and 14 # to get the complete set of inequivalent faithful irreducible 60-dimensional # representations of L2(59) r := 1; z := E(29)^r; result.symmetricforms := [ ]; result.antisymmetricforms := [ ]; result.hermitianforms := [ IdentityMat(60) ]; result.centralizeralgebra := [ IdentityMat(60) ]; result.generators := [ DiagonalMat([z^8,z^7,z^16,z^2,z^24,z^26,z^20,z^15,z^12,z^27,z^23,z^11, z^4,z^20,z^5,z^26,z^13,z^14,z^25,z^5,z^10,z^9,z^7,z^2,z^12,z^22, z^14,z^22,z^18,z^9,z^21,z^8,z^16,z^19,z^10,z^17,z^6,z^24,z^28,1, 1,z^23,z^13,z,z^28,z^11,z^18,z^3,z^15,z^21,z^3,z^6,z^19,z^21,z^25, z,z^27,z^4,z^17,z^8]) * PermutationMat( ( 1,54)( 2,26)( 3,17)( 4,57)( 5,20)( 6,51)( 7,22)( 8,27)( 9,36)(10,24)(11,37) (12,47)(13,55)(14,30)(15,38)(16,48)(18,49)(19,58)(21,34)(23,28)(25,59)(29,46) (31,60)(32,50)(33,43)(35,53)(39,56)(40,41)(42,52)(44,45), 60) , DiagonalMat([z^28,z^22,z^15,z^17,z^11,z^6,z^3,z^18,z^14,z^2,z^24,z^11, z^25,z^17,z^4,z^5,z^16,z^25,z,1,z^27,z^22,z^3,z^13,z^5,z^13,z^9, 1,z^3,z^28,z^7,z^10,z,z^8,z^26,z^15,z^19,z^20,z^20,z^14,z^4,z^21, z^19,z^2,z^9,z^23,z^6,z^12,z^23,z^26,z^10,z^12,z^16,z^21,z^18,z^24, z^8,z^27,z^7,z^26]) * PermutationMat( ( 1,45,54)( 2,12,18)( 3,16,27)( 4,14,56)( 5,36, 7)( 6,31,17)( 8,59,15) ( 9,38,11)(10,57,43)(13,47,58)(19,34,39)(20,29,60)(21,51,42)(22,49,26) (23,53,32)(24,50,37)(25,52,48)(28,30,33)(35,40,55)(41,44,46), 60)]; return result;