local z, r, result; result := rec(); result.comment := "L2(71) as 72 x 72 monomial matrices over Z(z35)\n"; # Change the value of r to any number between 1 and 17 # to get the complete set of inequivalent faithful irreducible 72-dimensional # representations of L2(71) r := 1; z := E(35)^r; result.symmetricforms := [ ]; result.antisymmetricforms := [ ]; result.hermitianforms := [ IdentityMat(72) ]; result.centralizeralgebra := [ IdentityMat(72) ]; result.generators := [ DiagonalMat([z^29,z^28,z^5,1,z^19,z^9,z^13,z^10,z^18,z^23,z^24,z^17, z^9,z^18,z^30,z,z^4,z^12,z^23,z^11,z^2,z^33,z^26,z^13,z^3,z^10,z^16, z^14,z^8,z^34,z,z^31,z^5,z^20,z^24,z^11,z^12,z^22,z^7,z^20,z^34, z^15,z^15,z^31,z^17,z^27,z^32,1,z^7,z^26,z^28,z^16,z^33,z^24,z^32, z^14,z^25,z^22,z^2,z^29,z^25,z^19,z^8,z^21,z^4,z^3,z^21,z^6,z^27, z^6,z^30,z^11]) * PermutationMat( ( 1,70)( 2,49)( 3,15)( 4,48)( 5,52)( 6,50)( 7,58)( 8,61)( 9,45)(10,37)(11,20) (12,14)(13,23)(16,30)(17,44)(18,19)(21,53)(22,59)(24,38)(25,55)(26,57)(27,62) (28,67)(29,69)(31,41)(32,65)(33,71)(34,43)(35,36)(39,51)(40,42)(46,63)(47,66) (54,72)(56,64)(60,68), 72) , DiagonalMat([z^21,z^30,z^2,z^8,z^6,1,z^26,z^28,z^23,z^32,z^12,z^16, z^3,z^4,z^14,z^34,z^12,z^26,z^7,z^7,z^23,z^9,z^19,z^24,z^27,z^34, z^18,z^20,z^8,z^25,z^20,z^24,z^6,z^17,z^14,z^29,z^21,z^17,z^11,1, z^13,z^31,z^30,z^13,z^33,z^19,z^33,z^22,z^20,z^32,z^27,z^11,z,z^5, z^2,z^10,z^15,z^16,z^9,z,z^10,z^22,z^28,z^31,z^4,z^15,z^3,z^29,z^25, z^18,z^5,z^15]) * PermutationMat( ( 1,18, 9)( 2,24,58)( 3,28,41)( 4,62,71)( 5, 6,68)( 7,36,66)( 8,21,46) (10,26,65)(11,59,15)(12,17,19)(13,42,53)(14,63,67)(16,70,27)(20,64,50) (22,49,33)(23,39,54)(25,47,61)(29,69,55)(30,32,37)(31,72,40)(34,60,38) (35,52,56)(43,44,51)(45,48,57), 72)]; return result;