local z, r, result; result := rec(); result.comment := "L2(79) as 80 x 80 monomial matrices over Z(z39)\n"; # Change the value of r to any number between 1 and 19 # to get the complete set of inequivalent faithful irreducible 80-dimensional # representations of L2(79) r := 1; z := E(39)^r; result.symmetricforms := [ ]; result.antisymmetricforms := [ ]; result.hermitianforms := [ IdentityMat(80) ]; result.centralizeralgebra := [ IdentityMat(80) ]; result.generators := [ DiagonalMat([z^13,z^34,z^15,1,z^11,z^2,z^25,z^32,z^20,z^21,z^37,z^34, z^17,z^17,z^3,z^10,z^11,z^9,z,z^14,z^13,z^29,z^31,z^14,z^12,z^23, z^15,z^30,z^38,z^26,z,z^19,z^28,z^32,z^28,z^3,z^35,z^36,z^2,z^8, z^36,z^22,z^19,z^23,z^35,z^4,z^27,z^37,z^7,z^26,z^4,z^16,z^33,z^27, z^6,z^9,z^5,z^25,z^30,z^12,z^38,z^20,1,z^29,z^18,z^33,z^24,z^11, z^6,z^8,z^21,z^31,z^24,z^18,z^16,z^22,z^7,z^10,z^5,z^28]) * PermutationMat( ( 1,30)( 2,79)( 3,73)( 4,63)( 5,33)( 6,11)( 7,24)( 8,77)( 9,32)(10,74)(12,57) (13,76)(14,42)(15,38)(16,64)(17,80)(18,28)(19,29)(20,58)(21,50)(22,78)(23,40) (25,47)(26,75)(27,67)(31,61)(34,49)(35,68)(36,41)(37,51)(39,48)(43,62)(44,52) (45,46)(53,55)(54,60)(56,59)(65,71)(66,69)(70,72), 80) , DiagonalMat([z^7,z^3,z^34,z^8,z^7,z^23,z^25,z^8,z^6,z^17,z^9,z^24, z^32,z^20,z^34,z^13,z^22,z^26,z^22,z^36,z^29,z^30,z^35,z^2,z^30, z^16,z^13,z^17,z^29,z^37,z^21,z^31,z,z^20,z^37,z^10,z^27,z^21,1, z^3,z^38,z^19,z^24,z^6,z^32,z^14,z^33,z^23,z^12,z^27,z^18,z^5,1, z^2,z^15,z^25,z^18,z^12,z^10,z^16,z,z^4,z^38,z^28,z^9,z^33,z^5,z^35, z^19,z^26,z^14,z^15,z^31,z^28,z^11,z^11,z^36,z^4,z^33,z^6]) * PermutationMat( ( 1,18,44)( 2,33,23)( 3,31, 6)( 4,26,72)( 5,61,32)( 7,24,49)( 8,41,45) ( 9,57,55)(10,42,40)(11,52,56)(12,48,73)(13,66,16)(14,65,36)(15,25,71) (17,74,64)(19,77,34)(20,78,63)(21,22,69)(28,75,76)(29,58,35)(30,46,37) (38,47,43)(39,68,62)(50,59,54)(51,67,60)(53,79,80), 80)]; return result;