local z, r, result; result := rec(); result.comment := "L2(97) as 98 x 98 monomial matrices over Z(z48)\n"; # Change the value of r to any number between 1 and 23 # to get the complete set of inequivalent faithful irreducible 98-dimensional # representations of L2(97) r := 1; z := E(48)^r; result.symmetricforms := [ ]; result.antisymmetricforms := [ ]; result.hermitianforms := [ IdentityMat(98) ]; result.centralizeralgebra := [ IdentityMat(98) ]; result.generators := [ DiagonalMat([z^29,z^17,z^27,z,z^44,z^21,z^2,z^8,z^29,z^33,z^15,z^38, z^35,z^40,z^6,z^47,z^39,z^10,z^23,z^19,z^20,z^22,z^43,z^21,z^18, z^16,z^19,z^5,z^33,z^40,z^46,z^31,z^25,z^27,z^3,z^20,z^15,z^41,z^34, z^4,z^26,z^30,z^7,z^44,z^43,z^12,1,z^12,z^31,z^45,1,z^5,z^36,z^23, z^13,z^47,z^7,z^39,z^14,z^22,z^42,z^25,z^36,z^37,z^4,z^13,z^42,z^14, z^3,z^10,z^46,z^9,z,z^11,z^38,z^8,z^46,z^30,z^28,z^16,z^32,z^11, z^2,z^26,z^41,z^32,z^45,z^6,z^18,z^34,z^28,-1,z^9,z^37,-1,z^35,z^17, z^2]) * PermutationMat( ( 1,20)( 2,49)( 3,24)( 4,56)( 5,65)( 6,34)( 7,31)( 8,14)( 9,27)(10,11)(12,70) (13,66)(15,61)(16,73)(17,93)(18,75)(19,33)(21,79)(22,41)(23,52)(25,78)(26,86) (28,45)(29,37)(30,76)(32,97)(35,87)(36,91)(38,43)(39,68)(40,44)(42,89)(46,63) (47,51)(48,53)(50,69)(54,62)(55,96)(57,85)(58,72)(59,90)(60,84)(64,82)(67,88) (71,98)(74,94)(77,83)(80,81), 98) , DiagonalMat([z^46,z^31,z^39,z^11,z^42,z^5,z^6,z^21,z^30,z^11,z^31, z^20,z^27,z^38,z^26,z^18,z^28,z^7,z^25,z^15,z^47,z^45,z^33,z,z^28, z^19,z^43,z^10,z,z^14,z^23,z^35,z^3,z^45,z^41,z^26,z^6,z^41,z^4, z^34,z^34,z^44,z^18,z^13,z^38,z^19,z^25,z^46,z^2,z^32,z^7,z^4,z^9, z^23,z^16,z^8,z^27,z^40,z^36,z^37,z^39,z^12,z^38,z^35,z^33,z^36, z^22,z^2,z^9,z^15,1,z^42,z^44,z^20,z^37,z^32,z^10,z^3,z^21,z^43, z^47,-1,z^13,z^12,z^29,z^17,z^29,1,z^14,z^17,z^22,z^5,z^40,z^30, z^16,-1,z^8,z^10]) * PermutationMat( ( 1,91,17)( 2,58,19)( 3,10,48)( 4,94,51)( 5,54,11)( 6,57,95)( 7,86,47) ( 8,70,84)( 9,20,78)(12,81,87)(13,59,23)(14,98,88)(15,49,74)(16,34,65) (18,24,93)(21,35,97)(22,63,44)(25,26,29)(27,85,96)(28,73,72)(30,62,67) (31,56,90)(32,77,33)(36,66,41)(37,52,45)(38,43,75)(39,69,64)(40,71,89) (42,83,61)(46,92,82)(53,68,60)(76,79,80), 98)]; return result;