About this representation

Group Co1
Group generators Standard generators
Number of points 98280
Primitivity information Primitive
Transitivity degree 1
Rank 4
Suborbit lengths 1, 4600, 46575, 47104
Character 1 + 299 + 17250 + 80730
Point stabiliser Co2
Contributed by Not recorded

Download

This representation is available in the following formats:

MeatAxe a b
MeatAxe binary a b
GAP a b
GAP a, b
Magma a, b

On conjugacy classes

Conjugacy class Fixed points Cycle type
1A 98280
2A 2280 248000
2B 0 249140
2C 264 249008
3A 0 332760
3B 378 332634
3C 27 332751
3D 0 332760
4A 120 21080, 424000
4B 24 21128, 424000
4C 136 21072, 424000
4D 48 21116, 424000
4E 0 424570
4F 12 2126, 424504
5A 0 519656
5B 60 519644
5C 5 519655
6A 0 3760, 616000
6B 0 616380
6C 36 2171, 3748, 615943
6D 27 3751, 616000
6E 42 2168, 3746, 615944
6F 3 212, 3759, 615996
6G 12 2183, 384, 616275
6H 0 616380
6I 0 388, 616336
7A 0 714040
7B 21 714037
8A 0 260, 4540, 812000
8B 8 256, 4540, 812000
8C 12 26, 4564, 812000
8D 4 210, 4564, 812000
8E 16 260, 4536, 812000
8F 0 224, 4558, 812000
9A 0 39, 910917
9B 0 39, 910917
9C 9 36, 910917
10A 0 5456, 109600
10B 0 109828
10C 0 230, 109822
10D 10 225, 5454, 109595
10E 5 5455, 109600
10F 4 228, 552, 109796
11A 6 118934
12A 0 340, 6360, 128000
12B 0 38, 6376, 128000
12C 0 316, 6372, 128000
12D 3 339, 46, 6360, 127998
12E 6 218, 338, 484, 6354, 127972
12F 0 128190
12G 0 221, 38, 484, 6369, 127972
12H 7 210, 343, 6354, 128000
12I 4 219, 344, 484, 6351, 127972
12J 6 218, 314, 484, 6366, 127972
12K 3 37, 46, 6376, 127998
12L 0 128190
12M 0 34, 642, 128168
13A 0 137560
14A 0 147020
14B 5 28, 7325, 146856
15A 0 156552
15B 0 320, 156548
15C 0 156552
15D 3 319, 575, 156523
15E 2 3, 55, 156550
16A 2 25, 43, 8282, 166000
16B 2 2, 45, 8282, 166000
18A 0 3, 64, 9253, 185332
18B 0 3, 64, 9253, 185332
18C 3 23, 63, 9253, 185332
20A 0 524, 10216, 204800
20B 2 2, 414, 52, 1025, 204898
20C 1 22, 527, 10214, 204800
21A 0 214680
21B 0 754, 214662
21C 0 37, 214679
22A 0 23, 1124, 224455
23A 1 234273
23B 1 234273
24A 0 620, 12180, 244000
24B 0 34, 62, 12188, 244000
24C 0 23, 49, 619, 842, 12177, 243986
24D 0 68, 12186, 244000
24E 2 22, 32, 49, 618, 842, 12177, 243986
24F 1 23, 35, 45, 619, 12177, 244000
26A 0 263780
28A 1 22, 44, 717, 14154, 283428
28B 0 283510
30A 0 15152, 303200
30B 0 610, 303274
30C 0 303276
30D 1 2, 33, 57, 68, 1034, 15149, 303187
30E 2 3, 55, 15150, 303200
33A 0 32, 332978
35A 0 352808
36A 0 3, 913, 122, 18120, 362666
39A 0 392520
39B 0 392520
40A 0 1012, 20108, 402400
42A 0 422340
60A 0 158, 3072, 601600

Checks applied

Check Description Date Checked by Result
Semi-presentation Check against a semi-presentation. If this fails, then the representation is not on standard generators, and may generate the wrong group. Note that the semi-presentation itself is not checked here. Jul 4, 2006 certify.pl version 0.05 Pass
Order Check that the elements generate a group of the correct order. Jul 5, 2006 permanalyse version 0.03 Pass
Number of points Check whether the permutation representation is acting on the stated number of points. Jul 4, 2006 certify.pl version 0.05 Pass
Files exist Check whether files exist (where stated). Jul 4, 2006 certify.pl version 0.05 Pass