About this representation

Group Co2
Group generators Standard generators
Number of points 4600
Primitivity information Transitive but imprimitive
Transitivity degree 1
Rank 5
Suborbit lengths 12, 8912, 2816
Character (1 + 275 + 2024) + (23 + 2277)
Contributed by Not recorded

Download

This representation is available in the following formats:

MeatAxe a b
MeatAxe binary a b
GAP a b
GAP a, b
Magma a, b

On conjugacy classes

Conjugacy class Fixed points Cycle type
1A 4600
2A 56 22272
2B 280 22160
2C 40 22280
3A 10 31530
3B 82 31506
4A 56 41136
4B 0 2140, 41080
4C 48 2116, 41080
4D 8 224, 41136
4E 32 2124, 41080
4F 8 2136, 41080
4G 0 220, 41140
5A 0 5920
5B 20 5916
6A 10 390, 6720
6B 2 24, 318, 6756
6C 20 231, 312, 6747
6D 2 240, 318, 6744
6E 10 236, 390, 6708
6F 4 239, 312, 6747
7A 8 7656
8A 0 228, 8568
8B 0 224, 458, 8540
8C 8 412, 8568
8D 0 24, 412, 8568
8E 8 220, 458, 8540
8F 4 214, 462, 8540
9A 4 32, 9510
10A 0 556, 10432
10B 6 27, 510, 10453
10C 0 210, 58, 10454
11A 2 11418
12A 2 318, 42, 12378
12B 6 22, 314, 638, 12360
12C 2 318, 420, 12372
12D 0 25, 316, 418, 637, 12354
12E 2 32, 42, 68, 12378
12F 0 25, 418, 645, 12354
12G 2 24, 310, 640, 12360
12H 2 24, 32, 418, 644, 12354
14A 0 24, 78, 14324
14B 0 24, 740, 14308
14C 0 24, 740, 14308
15A 2 36, 516, 15300
15B 0 52, 15306
15C 0 52, 15306
16A 0 42, 86, 16284
16B 0 24, 86, 16284
18A 2 2, 6, 96, 18252
20A 0 1028, 20216
20B 0 45, 104, 20227
23A 0 23200
23B 0 23200
24A 0 2, 69, 810, 24186
24B 0 23, 4, 67, 1219, 24180
28A 0 42, 78, 28162
30A 0 2, 32, 54, 62, 106, 152, 30149
30B 0 52, 1518, 30144
30C 0 52, 1518, 30144

Checks applied

Check Description Date Checked by Result
Presentation Check against the relations in a presentation. If this test passes, then the group is of the correct isomorphism type, and the generators are those stated. Note that the presentation itself is not checked here. Aug 2, 2006 certify.pl version 0.05 Pass
Semi-presentation Check against a semi-presentation. If this fails, then the representation is not on standard generators, and may generate the wrong group. Note that the semi-presentation itself is not checked here. Jul 4, 2006 certify.pl version 0.05 Pass
Order Check that the elements generate a group of the correct order. Jul 4, 2006 permanalyse version 0.03 Pass
Number of points Check whether the permutation representation is acting on the stated number of points. Jul 4, 2006 certify.pl version 0.05 Pass
Files exist Check whether files exist (where stated). Jul 4, 2006 certify.pl version 0.05 Pass