About this representation

Group Fi22
Group generators Standard generators
Number of points 14080
Distinguishing letter b
Primitivity information Primitive
Transitivity degree 1
Rank 3
Suborbit lengths 1, 3159, 10920
Character 1+429+13650
Contributed by Not recorded

Download

This representation is available in the following formats:

MeatAxe a b
MeatAxe binary a b
GAP a b
GAP a, b
Magma a, b

On conjugacy classes

Conjugacy class Fixed points Cycle type
1A 14080
2A 1408 26336
2B 256 26912
2C 128 26976
3A 112 34656
3B 148 34644
3C 49 34677
3D 13 34689
4A 0 2128, 43456
4B 16 2120, 43456
4C 0 2128, 43456
4D 16 256, 43488
4E 16 2120, 43456
5A 5 52815
6A 40 236, 3456, 62100
6B 4 272, 3468, 62088
6C 4 272, 384, 62280
6D 16 248, 380, 62288
6E 13 218, 3465, 62106
6F 8 252, 340, 62308
6G 20 264, 336, 62304
6H 17 216, 337, 62320
6I 1 224, 385, 62296
6J 5 222, 341, 62318
6K 5 24, 341, 62324
7A 3 72011
8A 0 464, 81728
8B 0 464, 81728
8C 0 464, 81728
8D 4 26, 428, 81744
9A 1 349, 91548
9B 7 347, 91548
9C 1 34, 91563
10A 3 2, 5281, 101267
10B 1 22, 551, 101382
11A 0 111280
11B 0 111280
12A 0 22, 436, 642, 121140
12B 0 28, 424, 640, 121144
12C 0 28, 424, 640, 121144
12D 4 26, 34, 424, 638, 121144
12E 4 28, 34, 432, 616, 121152
12F 4 28, 34, 432, 616, 121152
12G 1 28, 35, 48, 616, 121160
12H 0 22, 436, 642, 121140
12I 4 26, 34, 424, 638, 121144
12J 1 35, 412, 640, 121148
12K 1 22, 35, 42, 618, 121162
13A 1 131083
13B 1 131083
14A 1 2, 7201, 14905
15A 2 3, 522, 15931
16A 0 832, 16864
16B 0 832, 16864
18A 1 3, 624, 9156, 18696
18B 1 3, 624, 9156, 18696
18C 1 23, 3, 623, 9156, 18696
18D 1 3, 624, 928, 18760
20A 1 4, 53, 1024, 20691
21A 0 3, 716, 21665
22A 0 11128, 22576
22B 0 11128, 22576
24A 0 44, 812, 1220, 24572
24B 0 44, 812, 1220, 24572
30A 0 2, 3, 58, 107, 1591, 30420

Checks applied

Check Description Date Checked by Result
Presentation Check against the relations in a presentation. If this test passes, then the group is of the correct isomorphism type, and the generators are those stated. Note that the presentation itself is not checked here. Aug 2, 2006 certify.pl version 0.05 Pass
Semi-presentation Check against a semi-presentation. If this fails, then the representation is not on standard generators, and may generate the wrong group. Note that the semi-presentation itself is not checked here. Jul 4, 2006 certify.pl version 0.05 Pass
Order Check that the elements generate a group of the correct order. Jul 4, 2006 permanalyse version 0.03 Pass
Number of points Check whether the permutation representation is acting on the stated number of points. Jul 4, 2006 certify.pl version 0.05 Pass
Files exist Check whether files exist (where stated). Jul 4, 2006 certify.pl version 0.05 Pass