About this representation
Group
| Fi22
|
Group generators
| Standard generators
|
Number of points
| 3510
|
Primitivity information
| Primitive
|
Transitivity degree
| 1
|
Rank
| 3
|
Suborbit lengths
| 1, 693, 2816
|
Character
| 1+429+3080
|
Contributed by
| Not recorded
|
Download
This representation is available in the following formats:
On conjugacy classes
Conjugacy class |
Fixed points |
Cycle type |
1A
| 3510
|
|
2A
| 694
| 21408
|
2B
| 182
| 21664
|
2C
| 54
| 21728
|
3A
| 126
| 31128
|
3B
| 27
| 31161
|
3C
| 36
| 31158
|
3D
| 0
| 31170
|
4A
| 38
| 272, 4832
|
4B
| 30
| 276, 4832
|
4C
| 6
| 288, 4832
|
4D
| 6
| 224, 4864
|
4E
| 14
| 284, 4832
|
5A
| 10
| 5700
|
6A
| 46
| 240, 3216, 6456
|
6B
| 19
| 24, 3225, 6468
|
6C
| 11
| 28, 357, 6552
|
6D
| 14
| 256, 356, 6536
|
6E
| 10
| 213, 3228, 6465
|
6F
| 6
| 260, 316, 6556
|
6G
| 3
| 212, 317, 6572
|
6H
| 12
| 212, 314, 6572
|
6I
| 8
| 214, 358, 6550
|
6J
| 6
| 215, 316, 6571
|
6K
| 0
| 318, 6576
|
7A
| 3
| 7501
|
8A
| 6
| 216, 436, 8416
|
8B
| 6
| 216, 436, 8416
|
8C
| 2
| 22, 444, 8416
|
8D
| 2
| 22, 412, 8432
|
9A
| 6
| 37, 9387
|
9B
| 3
| 38, 9387
|
9C
| 0
| 9390
|
10A
| 4
| 23, 5138, 10281
|
10B
| 2
| 24, 536, 10332
|
11A
| 1
| 11319
|
11B
| 1
| 11319
|
12A
| 11
| 39, 44, 624, 12276
|
12B
| 2
| 26, 312, 428, 622, 12268
|
12C
| 2
| 26, 312, 428, 622, 12268
|
12D
| 6
| 24, 38, 428, 624, 12268
|
12E
| 3
| 3, 46, 68, 12286
|
12F
| 3
| 3, 46, 68, 12286
|
12G
| 0
| 26, 32, 46, 66, 12286
|
12H
| 3
| 24, 3, 44, 628, 12276
|
12I
| 2
| 26, 34, 428, 626, 12268
|
12J
| 0
| 24, 310, 47, 624, 12275
|
12K
| 0
| 32, 68, 12288
|
13A
| 0
| 13270
|
13B
| 0
| 13270
|
14A
| 1
| 2, 799, 14201
|
15A
| 1
| 33, 525, 15225
|
16A
| 0
| 2, 4, 822, 16208
|
16B
| 0
| 2, 4, 822, 16208
|
18A
| 4
| 2, 35, 6, 975, 18156
|
18B
| 4
| 2, 35, 6, 975, 18156
|
18C
| 1
| 2, 36, 6, 975, 18156
|
18D
| 2
| 22, 33, 62, 919, 18184
|
20A
| 0
| 2, 42, 56, 1015, 20166
|
21A
| 0
| 3, 718, 21161
|
22A
| 1
| 1163, 22128
|
22B
| 1
| 1163, 22128
|
24A
| 0
| 2, 32, 43, 65, 814, 1211, 24134
|
24B
| 0
| 2, 32, 43, 65, 814, 1211, 24134
|
30A
| 1
| 3, 59, 6, 108, 1543, 3091
|
Checks applied
Check |
Description |
Date |
Checked by |
Result |
Presentation
| Check against the relations in a presentation. If this test passes, then the group is of the correct isomorphism type, and the generators are those stated. Note that the presentation itself is not checked here.
| Aug 2, 2006
| certify.pl version 0.05
| Pass
|
Semi-presentation
| Check against a semi-presentation. If this fails, then the representation is not on standard generators, and may generate the wrong group. Note that the semi-presentation itself is not checked here.
| Jul 4, 2006
| certify.pl version 0.05
| Pass
|
Order
| Check that the elements generate a group of the correct order.
| Jul 4, 2006
| permanalyse version 0.03
| Pass
|
Number of points
| Check whether the permutation representation is acting on the stated number of points.
| Jul 4, 2006
| certify.pl version 0.05
| Pass
|
Files exist
| Check whether files exist (where stated).
| Jul 4, 2006
| certify.pl version 0.05
| Pass
|